fakeproj

Release 1.0rc

Anurag Saha Roy

Aug 31, 2021

CONTENTS:

Structuring your Project

1.1
1.2
1.3
1.4

Code -Test-Docso oo i e e
Packages, Modules and Imports Lo e
Configuration Files L e
README e

Dependency Management

2.1
2.2
2.3

pip + virtualenv for Dependency Managemento
conda + pip for Dependency Managementt e e e
Bonus: Containersand Docker

Code Documentation

3.1
32
33
34

DOCStrings o e e e e e e e e e e e e e e
Docstring COVEerage« v v vt e e e e e e e e e e e e e e
SphinX . . . o e e e e e
ReadTheDocs e e e e e e e e e e

Type Hinting in Python

4.1
42
43
4.4

Type Hints for Primitive Type o
Typing Module in Python e
Type Hints for 3rd Party Libraries e
MonkeyType and MyPy e e e e e e e e e

Tests and Code Coverage

5.1
5.2

Testing With pYtest o i e e e e e e e e e e e e e e
Code Coverage with pytest-covand Codecov.io ot v i vttt

Code Complexity

6.1
6.2

Measuring Complexity withradon e
Monitoring Complexity with xenon o e e e

Code Formatting and Linting

7.1
7.2
7.3

Code Formatting with black e e e
Code Linting with flake8 e e
Best Practices o e e e e e e

Collaboration with Git

8.1
8.2
8.3
8.4

Branching in git-flow style L L e e
Github Pull Requests e
Github Issues e e e e e e e
Versioning - seMVer vs Calver oL e e e e e e

N 09 (S IO, NV)

O O O O &

13
13
13

15
15
15

17
17
17
17

10

11

12

13

85 GitTagsand Releases o i i i e

Pre Commit Hooks

9.1 Pre-Commit Configfiles e
9.2 Black & Flake8 in precommit oo v vt e e e e e e e
9.3 MyPyinprecommit L e e e e e e e e e e e e
Automating Workflows and CI/CD

10.1 Continuous Integration i e e e e e e e e e e e e e
10.2 Continuous Deployment o e e e e e e e
10.3 Automating with Github Actions L

Packaging and Publishing

11.1 setup.py for Packaging e e e
11.2 Publishingto PyPi e
11.3 Publishingto Conda Forge e

Making Development Enjoyable

12.1 WhydoyouneedanIDE?
12.2 AnOpinionated Takeon IDEs e
123 Useful Plugins o o o e e

Indices and Search

21
21
21
21

23
23
23
23

25
25
25
25

27
27
27
27

29

fakeproj, Release 1.0rc

This documentation is intended to serve as a self-paced tutorial to familiarise Python developers with various tools
that can help them develop, maintain and publish better code while making the experience a lot more enjoyable.
The repository contains sample files that demonstrate all the functionality that we discuss in this tutorial. Ideally, one
should start from an empty repository and follow along the various sections below to write code, documentation & tests
and then configure the build and deployment systems, referring to the sample code whenever necessary. Originally
intended for scientific software developers coming from a non Software Engineering background, the tutorial mainly
focuses on developing python libraries (as opposed to webapps). However, much of the information here is applicable
and transferable to other domains of software development as well.

What this tutorial isn’t, is an in-depth treatment of the various tools we describe. Almost always, we will provide a brief
introduction and give a taste of what all can be done using a particular tool and then include links to documentation
and tutorials that do a better job in giving you a step-by-step guide to using said tools.

CONTENTS: 1

fakeproj, Release 1.0rc

2 CONTENTS:

CHAPTER
ONE

STRUCTURING YOUR PROJECT

Structuring the project repository into useful directories is an essential first step in ensuring that your code stays
organised and new contributors or users of your repository can intuitively know where to look for what.

1.1 Code - Test - Docs

Most projects have 4 major parts:
1. Source Code
2. Tests and Benchmarks
3. Documentation

4. Configuration Files

The typical repository structuring involves keeping all your source code in a src/ or project_name/ and all
your documentation in a docs/ directory. The tests can either reside along side the code or be in a separate test /
directory in the repository root. For the tutorial repository fakeproj, we choose the latter, as below:

fakeproj/
docs
L— source
fakeproj
fakedir
gooddir
test

The Qiskit repository follows a similar structure:

giskit-terra/

F—— docs

L source_images
examples

giskit

F—— assembler

(continues on next page)

https://github.com/lazyoracle/fakeproj
https://github.com/Qiskit/qiskit-terra

fakeproj, Release 1.0rc

(continued from previous page)

L— visualization
— releasenotes

L notes
— test

ipynb
python
randomized

-— tools

However, tests in Numpy reside closer to the code being tested:

numpy/numpy
—— compat
L— tests
— core
code_generators
include
src
tests

fft
L— tests
1lib
L— tests

L typing
L tests

This is typically a matter of style and policy. The general practice is if you wish your tests to be installed as a part of
your library, you keep them closer to your code while if the tests are only meant to be used for development, you keep
them in a separate directory.

1.2 Packages, Modules and Imports

When working on a large project, you typically want to convert your python scripts to modules and packages that can
be imported and reused elsewhere in the code. For the tutorial repository this looks as below:

fakeproj/fakeproj/
__init__.py
fakedir
__init___.py
fakemodule.py
gooddir

__init__ _.py
goodmodule.py
sysmodule.py

The __init__ .py is the magic ingredient that allows you to convert your Python modules into packages that can
now be imported and used from other directories. In the simplest case, __init__ .py can just be an empty file, but it
can also execute initialization code for the package or setthe __all__ variable. The Python Packages Documentation
describes this in further details.

4 Chapter 1. Structuring your Project

https://github.com/numpy/numpy
https://docs.python.org/3/tutorial/modules.html#packages

fakeproj, Release 1.0rc

A related topic that often confuses new developers working with packages and modules in Python is how the interpretor
deals with Imports - both relative and absolute. We list below some useful resources that address the usual confusions:

* Relative imports for the billionth time - Stackoverflow

* Python PEP 328: import and build package

1.3 Configuration Files

There will always be various configuration files in your repository that interact with the services you use to maintain
your code. These are typically stored in the root of the directory because that is where most services will look for
these files (unless otherwise specified). Some of these files can also be combined in the form of . toml files, but it
is usually advisable to have separate configuration files for the different services used. We list some common ones
below:

e .gitignore - Files you don’t want git to track (Useful gitignores)
e .pre-commit-config.yaml - Pre Commit Hooks
* pytest.ini or conftest.py - Tests and Code Coverage

* .github/ - Automating Workflows and CI/CD

1.4 README

The README . md is essentially the front page to your repository and it is imperative that you provide a concise and
useful introduction to your project while providing instructions for using and/or contributing to the code base. Below
are some of the useful features that are nice to have in an Awesome README :

* Clear description of what the project does

* Table of Contents for easy navigation

* Step-by-Step installation and setup sections

* Overview of features

¢ Instructions for Contribution

* Demo screenshot or GIF

* Code snippets demonstrating common features/functionality
* API Overview where applicable

» Badges for stats

* FAQ for common usage and troubleshooting points

* Instructions on filing bugs/feature requests and getting support
 List of Alternatives

* Link to Documentation

 Link to Project Website

 Bibtext for citing the project

 References for further reading

* Contact details - Email or Mailing List or Gitter/Slack

1.3. Configuration Files 5

https://stackoverflow.com/questions/14132789/relative-imports-for-the-billionth-time
https://jingwen-z.github.io/python-pep-328-import-and-build-package/
https://github.com/github/gitignore
https://github.com/matiassingers/awesome-readme

fakeproj, Release 1.0rc

6 Chapter 1. Structuring your Project

CHAPTER
TWO

DEPENDENCY MANAGEMENT

2.1 pip + virtualenv for Dependency Management
2.2 conda + pip for Dependency Management

2.3 Bonus: Containers and Docker

fakeproj, Release 1.0rc

8 Chapter 2. Dependency Management

CHAPTER
THREE

CODE DOCUMENTATION

3.1 Docstrings
3.2 Docstring coverage
3.3 Sphinx

3.4 ReadTheDocs

fakeproj, Release 1.0rc

10 Chapter 3. Code Documentation

CHAPTER
FOUR

4.1 Type Hints for Primitive Type
4.2 Typing Module in Python
4.3 Type Hints for 3rd Party Libraries

4.4 MonkeyType and MyPy

4.4.1 Related

TYPE HINTING IN PYTHON

11

fakeproj, Release 1.0rc

12 Chapter 4. Type Hinting in Python

CHAPTER
FIVE

TESTS AND CODE COVERAGE

5.1 Testing with pytest

5.2 Code Coverage with pytest-cov and Codecov.io

13

fakeproj, Release 1.0rc

14 Chapter 5. Tests and Code Coverage

CHAPTER
SIX

CODE COMPLEXITY

6.1 Measuring Complexity with radon

6.2 Monitoring Complexity with xenon

15

fakeproj, Release 1.0rc

16 Chapter 6. Code Complexity

CHAPTER
SEVEN

CODE FORMATTING AND LINTING

7.1 Code Formatting with black
7.2 Code Linting with flake8

7.3 Best Practices

7.3.1 Related

17

fakeproj, Release 1.0rc

18 Chapter 7. Code Formatting and Linting

CHAPTER
EIGHT

8.1 Branching in git-flow style
8.2 Github Pull Requests

8.3 Github Issues

8.4 Versioning - semver vs calver

8.5 Git Tags and Releases

COLLABORATION WITH GIT

19

fakeproj, Release 1.0rc

20 Chapter 8. Collaboration with Git

CHAPTER
NINE

PRE COMMIT HOOKS

9.1 Pre-Commit Config files
9.2 Black & Flake8 in precommit

9.3 MyPy in precommit

21

fakeproj, Release 1.0rc

22 Chapter 9. Pre Commit Hooks

CHAPTER
TEN

AUTOMATING WORKFLOWS AND CI/CD

10.1 Continuous Integration
10.2 Continuous Deployment

10.3 Automating with Github Actions

23

fakeproj, Release 1.0rc

24 Chapter 10. Automating Workflows and CI/CD

CHAPTER
ELEVEN

PACKAGING AND PUBLISHING

11.1 setup.py for Packaging
11.2 Publishing to PyPi

11.3 Publishing to Conda Forge

25

fakeproj, Release 1.0rc

26 Chapter 11. Packaging and Publishing

CHAPTER
TWELVE

MAKING DEVELOPMENT ENJOYABLE

12.1 Why do you need an IDE?
12.2 An Opinionated Take on IDEs

12.3 Useful Plugins

27

fakeproj, Release 1.0rc

28 Chapter 12. Making Development Enjoyable

CHAPTER
THIRTEEN

INDICES AND SEARCH

* genindex
* modindex

e search

29

	Structuring your Project
	Code - Test - Docs
	Packages, Modules and Imports
	Configuration Files
	README

	Dependency Management
	pip + virtualenv for Dependency Management
	conda + pip for Dependency Management
	Bonus: Containers and Docker

	Code Documentation
	Docstrings
	Docstring coverage
	Sphinx
	ReadTheDocs

	Type Hinting in Python
	Type Hints for Primitive Type
	Typing Module in Python
	Type Hints for 3rd Party Libraries
	MonkeyType and MyPy

	Tests and Code Coverage
	Testing with pytest
	Code Coverage with pytest-cov and Codecov.io

	Code Complexity
	Measuring Complexity with radon
	Monitoring Complexity with xenon

	Code Formatting and Linting
	Code Formatting with black
	Code Linting with flake8
	Best Practices

	Collaboration with Git
	Branching in git-flow style
	Github Pull Requests
	Github Issues
	Versioning - semver vs calver
	Git Tags and Releases

	Pre Commit Hooks
	Pre-Commit Config files
	Black & Flake8 in precommit
	MyPy in precommit

	Automating Workflows and CI/CD
	Continuous Integration
	Continuous Deployment
	Automating with Github Actions

	Packaging and Publishing
	setup.py for Packaging
	Publishing to PyPi
	Publishing to Conda Forge

	Making Development Enjoyable
	Why do you need an IDE?
	An Opinionated Take on IDEs
	Useful Plugins

	Indices and Search

